Mengajardengan peta berarti menggunakan peta untuk membantu siswa mempelajari konsep dan hubungan utama IPS. Mengajar dengan peta memungkinkan siswa untuk belajar melalui peta—yaitu, berpikir secara spasial—dalam berbagai konteks penalaran dan pemecahan masalah di kelas dan dunia nyata. Apa tujuan penggunaan peta dalam pengajaran?
Untukmengetahui tentang berbagai gejala tentang iklim dan cuaca di permukaan bumi, maka kita harus mempelajari? oseanografi dan hidrologi; meteorologi dan klimatologi; meteorologi dan hidrologi; hidrologi dan geomorfologi; biogeografi dan klimatologi; Jawaban yang benar adalah: B. meteorologi dan klimatologi.
Bumitergolong planet kebumian yang umumnya terdiri dari bebatuan, bukannya raksasa gas seperti Jupiter.Bumi adalah planet terbesar dari empat planet kebumian lainnya menurut ukuran dan massa. Dari keempat planet tersebut, Bumi merupakan planet dengan kepadatan tertinggi, gravitasi permukaan tertinggi, medan magnet terkuat, dan rotasi tercepat, dan diperkirakan juga merupakan satu-satunya
Tidakcukup dengan hanya gelar karena itu hanyalah sebagai gerbang pembuka. Elemen elemen dasar desain interior ini biasa digunakan sebagai landasan dasar bagi para desainer maupun. Ketika kuliah di jurusan desain interior kamu akan mempelajari tentang perancangan dan perencanaan penataan suatu ruang bangunan.
TQvkkS. 0% found this document useful 0 votes57 views7 pagesDescriptionSUSUNAN INTERIOR BUMI Susunan interior bumi dapat diketahui berdasarkan dari sifat sifat fisika bumi geofisika. Sebagaimana kita ketahui bahwa bumi mempunyai sifat-sifat fisik seperti misalnya gaya tarik gravitasi, kemagnetan, kelistrikan, merambatkan gelombang seismik, dan sifat fisika lainnya. Melalui sifat fisika bumi inilah para akhli geofisika mempelajari susunan bumi, yaitu misalnya dengan metoda pengukuran gravitasi bumi gaya tarik bumi, sifat kemagnetan bumi, sifat penghantarkan arus listrik, dan sifat menghantarkan gelombang © All Rights ReservedAvailable FormatsPDF, TXT or read online from ScribdShare this documentDid you find this document useful?0% found this document useful 0 votes57 views7 pagesSusunan Interior BumiDescriptionSUSUNAN INTERIOR BUMI Susunan interior bumi dapat diketahui berdasarkan dari sifat sifat fisika bumi geofisika. Sebagaimana kita ketahui bahwa bumi mempunyai sifat-sifat fisik seperti …Full description
Sebelum Anda dapat mempelajari tentang lempeng tektonik, Anda perlu mengetahui sesuatu tentang lapisan yang ditemukan di dalam Bumi. Lapisan-lapisan ini dibagi oleh komposisi menjadi inti, mantel, dan kerak atau oleh sifat mekanik/fisik menjadi litosfer dan astenosfer. Para ilmuwan menggunakan informasi dari gempa bumi dan pemodelan komputer untuk belajar tentang interior Bumi. Manusia memang tidak pernah mengebor melewati kerak Bumi, namun kita tahu banyak tentang komposisi interior bumi. Batuan memang menghasilkan beberapa petunjuk, tetapi mereka hanya mengungkapkan informasi tentang kulit luar. Dalam kasus yang jarang terjadi, sebuah mineral, seperti intan, muncul ke permukaan dari bawah ke dalam kerak atau mantel. Untuk mempelajari tentang interior Bumi, para ilmuwan menggunakan energi gempa, dicatat dengan seismograf, untuk “melihat” berbagai lapisan Bumi, sama seperti dokter dapat menggunakan MRI, CT scan, atau x-ray untuk melihat ke dalam tubuh kita. Salah satu cara cerdas yang dipelajari para ilmuwan tentang interior Bumi adalah dengan melihat bagaimana energi bergerak dari titik gempa bumi, yang disebut gelombang seismik. Gelombang seismik bergerak keluar ke segala arah dari tempat bumi break akibat gempa bumi. Stasiun seismograf mengukur energi yang dilepaskan oleh gempa bumi ini, tetapi ada dua hal yang paling diminati oleh para ilmuwan sehubungan dengan memahami bagian dalam bumi, yaitu gelombang P dan gelombang S. Gelombang primer juga disebut gelombang-P adalah yang tercepat, menempuh jarak sekitar 6 hingga 7 kilometer sekitar 4 mil per detik, sehingga mereka tiba lebih dulu di seismometer. Gelombang-P bergerak dalam gerakan kompresi / jenis ekspansi, meremas dan material bumi yang tidak dikerjakan saat mereka melakukan perjalanan. Gelombang-P menekuk sedikit ketika mereka melakukan perjalanan dari satu lapisan ke lapisan lainnya. Gelombang seismik bergerak lebih cepat melalui material yang lebih padat atau lebih kaku. Ketika gelombang-P bertemu dengan inti luar cair, yang kurang kaku dari mantel, mereka melambat. Hal ini membuat gelombang-P tiba lebih lama dan lebih jauh dari yang diperkirakan. Hasilnya adalah zona bayangan gelombang P. Tidak ada gelombang P dijemput di seismograf 104° ke 140° dari fokus gempa bumi. Gelombang sekunder juga disebut gelombang-S kira-kira setengah secepat gelombang-P, menempuh jarak sekitar 3,5 km 2 mil per detik, dan tiba di urutan kedua pada seismograf. Gelombang-S bergerak dalam gerakan naik dan turun tegak lurus dengan arah penjalaran gelombang. Ini menghasilkan perubahan bentuk untuk material bumi yang mereka lewati. Hanya zat padat yang menahan perubahan bentuk, sehingga gelombang-S hanya mampu menyebar melalui padatan. Gelombang-S tidak dapat melakukan perjalanan melalui cairan. Dengan melacak gelombang seismik, para ilmuwan telah mempelajari apa yang membentuk interior planet. Gelombang P melambat di batas inti-mantel, jadi kita tahu inti luar kurang kaku daripada mantel. Gelombang-S menghilang pada batas inti mantel, jadi inti luarnya cair. Petunjuk lain untuk interior Bumi mencakup fakta bahwa kita tahu bahwa kepadatan Bumi secara keseluruhan lebih tinggi daripada kerapatan batuan kerak, sehingga inti harus terbuat dari sesuatu yang padat, seperti logam. Juga, karena Bumi memiliki medan magnet, pasti ada logam di dalam planet ini. Besi dan nikel keduanya bersifat magnetis. Akhirnya, meteorit adalah sisa-sisa bahan yang membentuk tata surya awal dan dianggap mirip dengan materi di bagian dalam Bumi. Bidang Diskontinuitas 3 Diskontinuitas teramati dari perambatan gelombang S. Pertama pada batas kerak dan mantel yang dinamakan Diskontinuitas Mohorovicic Moho. Selanjutnya pada kedalaman 400 km tempat transisi mantel atas dan mantel bawah yang dinamakan Diskontinuitas Weichert-Gutenberg-Taylor WGT. Terakhir pada kedalaman 670 km, batas antara mantel dan inti luar, dinamakan Diskontinuitas Lehmann. Gelombang P dan S menurun kecepatannya pada zona LVZ, lapisan transisi yang membatasi Litosfer dan Astenosfer. Gelombang S tidak merambat pada inti luar bersifat cair. Komposisi dan Struktur Interior Bumi Inti, mantel, dan kerak adalah divisi berdasarkan komposisi. Kerak bumi memuat kurang dari 1 persen massa Bumi, yang terdiri dari kerak samudera dan kerak benua. Mantelnya panas dan mewakili sekitar 68 persen massa Bumi. Akhirnya, inti sebagian besar adalah besi logam. Inti membentuk sekitar 31% dari Bumi. Litosfer dan astenosfer adalah divisi berdasarkan sifat mekanik. Litosfer terdiri dari kerak dan bagian mantel atas yang berperilaku sebagai padat yang rapuh dan kaku. Astenosfer adalah material mantel atas yang sebagian meleleh yang berperilaku plastis dan dapat mengalir. Animasi ini oleh Earthquide menunjukkan lapisan dengan komposisi dan oleh sifat mekanik. Kerak dan Litosfer Kerak benua, disebut juga SIAL silikon+alumunium terdiri dari batuan beku granitik granodiorit. Ketebalan rata-ratanya 35 km dengan kedalaman rata-rata dari 20-90 km. Karena tebal dan memiliki kerapatan yang relatif rendah 2,7 gr/cm3, kerak benua naik lebih tinggi pada mantel daripada kerak samudera. Kerak samudera, disebut juga SIMA silikon+magnesium terdiri dari batuan beku mafik/basaltik komplek ofiolit. Ketebalan rata-ratanya 10 km dengan kedalaman rata-rata dari 7-20 km. Karena memiliki kerapatan yang relatif tinggi 3,3 gr/cm3, kerak samudera tenggelam ke dalam mantel untuk membentuk cekungan. Ketika diisi dengan air, cekungan ini membentuk lautan di planet ini. Kerak samudera dipisahkan dari kerak benua oleh bidang diskontinuitas conrad Conrad Discontinuity. Litosfer adalah lapisan mekanis terluar dengan tebal sekitar 100 kilometer. Definisi litosfer didasarkan pada bagaimana material bumi berperilaku, jadi litosfer terdiri dari kerak dan mantel paling atas yang berfasa padat ±70 km, yang sama-sama kaku brittle. Karena sifatnya kaku dan rapuh, ketika tekanan bekerja pada litosfer, ia rusak. Inilah yang kami alami sebagai gempa bumi. Astenosfer adalah lapisan mekanis yang berada di bawah litosfer dan membuatnya bergerak terapung di atasnya. Menurunnya kecepatan gelombang adalah karena perilaku materialnya yang liat ductile mulai dari kedalaman ±50-75 km. Mantel Mantel atau selubung terdiri dari batuan beku ultramafik peridotit dengan densitas 3,5-5,5 gr/cm3. Mantel Atas sampai dengan kedalaman 410 km dengan Low Velocity Layer pada 60-220 km karena terjadi peluruhan dari olivine menjadi spinel. Adapun Zona Transisi, terjadi peningkatan cepat rambat gelombang secara drastis, batasnya dari kedalaman 410-660 km dimana terjadi peluruhan dari spinel menjadi perovskite-type. Sedangkan di Mantel Bawah, velocity meningkat secara gradual hingga kedalaman 2898 km. Konveksi dalam mantel sama dengan konveksi dalam panci air di atas kompor. Konveksi arus dalam bentuk mantel Bumi sebagai bahan dekat inti memanas. Saat inti memanaskan lapisan bawah bahan mantel, partikel bergerak lebih cepat, mengurangi kerapatannya dan menyebabkannya naik. Bahan naik memulai arus konveksi. Ketika bahan hangat mencapai permukaan, ia menyebar secara horizontal. Bahan mendingin karena tidak lagi di dekat inti. Akhirnya menjadi cukup dingin dan padat untuk tenggelam kembali ke dalam mantel. Di bagian bawah mantel, materi bergerak secara horizontal dan dipanaskan oleh inti. Mencapai lokasi di mana bahan mantel hangat naik, dan sel konveksi mantel selesai. Inti Di pusat planet ini terdapat inti metalik yang padat. Para ilmuwan tahu bahwa intinya adalah logam karena beberapa alasan. Kepadatan lapisan permukaan Bumi jauh lebih sedikit daripada kerapatan keseluruhan planet ini, seperti yang dihitung dari rotasi planet. Jika lapisan permukaannya kurang padat daripada rata-rata, maka interiornya harus lebih padat daripada rata-rata. Perhitungan menunjukkan bahwa intinya adalah sekitar 85 persen logam besi dengan logam nikel yang membentuk sebagian besar dari 15 persen sisanya. Selain itu, meteorit metalik dianggap mewakili inti. Jika inti Bumi bukan logam, planet ini tidak akan memiliki medan magnet. Logam seperti besi bersifat magnetis, tetapi batuan, yang membentuk mantel dan kerak, tidak. Para ilmuwan tahu bahwa inti luarnya cair dan inti dalamnya padat karena gelombang-S berhenti di inti dalam. Densitas inti luar berkisar 10,0-12,3 gr/cm3, komposisi 87%Fe + 7%Ni + 6%S. Sedangkan Inti Dalam bersifat padat karena tekanan yang sangat besar oleh beban di atasnya setebal 5145 km. Lapisan ini dilalui oleh gelombang P, densitasnya berkisar 13,3-13,6 gr/cm3. Komposisi 60% Fe + 40%Ni. Referensi After Kearey and Vine 1990, Global Tectonics. © Blackwell Scientific. Oxford. Ehlers, and Blatt, H., 1982, Petrology Igneous, Sedimentary and Metamorphic, Freeman and Co., San Francisco.
Argonne National Laboratory Hasil studi terbaru ilmuwan menemukan bahwa bagian dalam Bumi mendingin lebih cepat dari yang diperkirakan. Bumi kita adalah kisah pendinginannya yang terjadi 4,5 miliar tahun yang lalu, dengan memiliki suhu ekstrem di permukaan Bumi muda, dan ditutupi oleh lautan magma yang dalam. Selama jutaan tahun, permukaan planet kita mendingin untuk membentuk kerak yang rapuh. Namun, energi panas yang sangat besar yang memancar dari interior bumi membuat proses dinamis bergerak, seperti konveksi mantel, tektonik lempeng, dan vulkanisme. Masih belum terjawab pertanyaan tentang seberapa cepat Bumi mendingin dan berapa lama waktu yang dibutuhkan untuk pendinginan yang berkelanjutan ini sehngga menghentikan proses yang didorong oleh panas tersebut. Satu jawaban yang mungkin terletak pada konduktivitas termal mineral yang membentuk batas antara inti dan mantel bumi. Lapisan batas ini relevan karena di sinilah batuan kental mantel bumi bersentuhan langsung dengan lelehan besi-nikel panas dari inti luar planet. Gradien suhu antara kedua lapisan sangat curam, sehingga berpotensi banyak panas mengalir di sini. Lapisan batas terbentuk terutama dari mineral bridgmanite. Namun, para peneliti kesulitan memperkirakan berapa banyak panas yang dibawa mineral ini dari inti bumi ke mantel karena verifikasi eksperimental yang sangat sulit. Kini, Profesor ETH Motohiko Murakami dan rekan-rekannya dari Carnegie Institution for Science telah mengembangkan sistem pengukuran canggih yang memungkinkan mereka dapat mengukur konduktivitas termal bridgmanite di laboratorium, di bawah kondisi tekanan dan suhu yang berlaku di dalam Bumi. Untuk pengukuran tersebut, mereka menggunakan sistem pengukuran penyerapan optik yang dikembangkan baru-baru ini dalam unit berlian yang dipanaskan dengan laser berdenyut. "Sistem pengukuran ini menunjukkan bahwa konduktivitas termal bridgmanite sekitar 1,5 kali lebih tinggi dari yang diasumsikan," kata Murakami. “Ini menunjukkan bahwa aliran panas dari inti ke dalam mantel juga lebih tinggi dari yang diperkirakan sebelumnya. Aliran panas yang lebih besar, pada gilirannya, meningkatkan konveksi mantel dan mempercepat pendinginan Bumi. Hal ini dapat menyebabkan lempeng tektonik yang terus berlangsung oleh gerakan konvektif mantel, melambat lebih cepat daripada yang diperkirakan para peneliti berdasarkan nilai konduksi panas sebelumnya.” terangnya. Yuri Arcurs/E+/Getty Images Energi panas yang sangat besar yang memancar dari interior bumi membuat proses dinamis bergerak, seperti konveksi mantel, tektonik lempeng, dan vulkanisme. Murakami bersama dengan rekan-rekannya juga telah menunjukkan bahwa pendinginan mantel yang cepat akan mengubah fase mineral yang stabil pada batas inti-mantel. Saat mendingin, bridgmanite berubah menjadi mineral pasca-perovskit. Tetapi segera setelah post-perovskit muncul di batas inti-mantel dan mulai mendominasi, pendinginan mantel mungkin akan semakin cepat, para peneliti memperkirakan, karena mineral ini menghantarkan panas lebih efisien daripada bridgmanite. "Hasil kami dapat memberi kami perspektif baru tentang evolusi dinamika Bumi. Mereka menyarankan bahwa Bumi, seperti planet berbatu lainnya Merkurius dan Mars, mendingin dan menjadi tidak aktif lebih cepat dari yang diperkirakan," jelas Murakami. Namun, dia tidak bisa mengatakan berapa lama, misalnya, arus konveksi di mantel berhenti. Unsplash Meskipun suhu permukaan terus berubah dan bahkan setelah mencapai rekor panas, interior mengalami kebalikannya. PROMOTED CONTENT Video Pilihan
kita dapat mengetahui informasi tentang interior bumi dengan mempelajari